

CS108L Computer Science for All
Module 5 NetLogo Code Cheat Sheet

Command / Variable Description
reset-ticks Resets the tick counter. Put in the Setup Procedure ​after​ ​clear-all
tick Increments the tick counter for the program (for use in update view). Put in the go

procedure
globals​ [​var1 var2 ...​] A keyword that can only be used at the beginning of a program, before any functions or

procedures. It defines new global variables. Global variables are "global" because they
are accessible by all agents and can be used anywhere in the program. Most often,
globals is used to define variables that need to be used in many parts of the program.
Example:
globals​ [NumTurtles ColorTurtles]​ ;; declares two global variables
 ;; NumTurtles and ColorTurtles.

breed​ [​plural_name singular_name​] Defines a breed. It is used at the beginning of the Code tab, before any procedure
definitions. The first input in the square bracket defines the name of the agentset
associated with the breed (the group of all members of that breed) and is given the plural
name of the breed. The second input defines the name of a single member of the breed.
Note: Every breed is still a turtle, but turtles can only be one breed.
Example:
breed​ [frogs frog]​ ;; defines the breed frogs

<breeds>​-own​ [​var1 var2 …​]
turtles-own​ [​var1 var2 …​]
patches-own​ [​var1 var2 …​]

The ​<breeds>​-own​ keyword defines the variables belonging to that breed and can only
be used at the beginning of a program, before any procedures. If you specify
turtles-own​ variables then ​all​ breeds of turtles will have that variable.
Note: Each agent has its own copy of the variable. If turtle 1 has a lifespan of 5, turtle 2
could have a lifespan of 8.
Note: You must give the variable an initial value (i.e. in setup) before it can be used.
Example:
frogs-own​ [energy]​ ;; creates the variable energy exclusively for the breed frogs
turtles-own​ [lifespan] ​ ;; creates the variable lifespan for ​all​ turtles, of all breeds
patches-own​ [lifespan] ​ ;; creates the variable lifespan for ​all​ turtles, of all breeds

Module 5 Cheat Sheet
revised June 2018

count​ ​agentset Counts the number of agents in a given agent set.
Example:
count turtles​ ;; counts the number of turtles
show​ count turtles with​ [​color​ ​=​ ​red​]​ ;; shows the number of red turtles in the
 ;; Command Center

set​ ​shape​ ​"string" Used in ​ask​ ​turtles​ or ​ask​ <breeds>​ command brackets to set the shape of the agent.
Example:
ask​ ​turtles​ [​set​ ​shape​ ​"wolf"​]​ ;; sets all turtles’ shapes to wolf

ask​ <breed> ​#​ [​commands​]
ask​ <breeds> [​commands​]

Tells the given agent or group of agents (agentset) to run the given commands.
Example:
ask​ frog ​4​ [​set​ ​color​ ​red​]​ ;; sets frog 4’s color to red
ask​ frogs [​right ​90​]​ ;; all frogs turn right 90 degrees

hatch​ ​#
hatch​ #​ [​commands​]
hatch-<​breeds>​ ​#
hatch-​<breeds> ​#​ [​commands​]

Creates ​#​ new turtles or <​breeds​> that are exact copies of its parent. For example, new
turtles will have the same color and heading as their parent, and the same agent variable
values (e.g. lifespan or energy from above). Only a turtle can ​hatch​. The turtles
immediately run ​commands​. This is useful for giving the new turtles different colors,
headings, or whatever.
If the ​hatch-​<breeds>​ form is used, the new turtles are created as members of the given
breed. Otherwise, the new turtles are the same breed as their parent.
Example:
ask​ ​turtles
[
 ​hatch​ ​1​ ​;; every turtle creates one new turtle, a copy of itself
 [
 ​left​ ​45​ ​;; the new turtles turn left and move away
 ​forward​ ​1
]
 hatch-sheep ​1​ [​set​ ​color​ ​black​]​ ;; every turtle then creates a single black sheep
]

Module 5 Cheat Sheet
revised June 2018

